首页> 外文OA文献 >Magnetospheric Multiscale (MMS) Mission Attitude Ground System Design
【2h】

Magnetospheric Multiscale (MMS) Mission Attitude Ground System Design

机译:磁层多尺度(MMS)任务姿态地面系统设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper describes the attitude ground system (AGS) design to be used for support of the Magnetospheric MultiScale (MMS) mission. The AGS exists as one component of the mission operations control center. It has responsibility for validating the onboard attitude and accelerometer bias estimates, calibrating the attitude sensors and the spacecraft inertia tensor, and generating a definitive attitude history for use by the science teams. NASA's Goddard Space Flight Center (GSFC) in Greenbelt, Maryland is responsible for developing the MMS spacecraft, for the overall management of the MMS mission, and for mission operations. MMS is scheduled for launch in 2014 for a planned two-year mission. The MMS mission consists of four identical spacecraft flying in a tetrahedral formation in an eccentric Earth orbit. The relatively tight formation, ranging from 10 to 400 km, will provide coordinated observations giving insight into small-scale magnetic field reconnection processes. By varying the size of the tetrahedron and the orbital semi-major axis and eccentricity, and making use of the changing solar phase, this geometry allows for the study of both bow shock and magnetotail plasma physics, including acceleration, reconnection, and turbulence. The mission divides into two phases for science; these phases will have orbit dimensions of 1.2 x 12 Earth radii in the first phase and 1.2x25 Earth radii in the second in order to study the dayside magnetopause and the nightside magnetotail, respectively. The orbital periods are roughly one day and three days for the two mission phases. Each of the four MMS spacecraft will be spin stabilized at 3 revolutions per minute (rpm), with the spin axis oriented near the ecliptic north pole but tipped approximately 2.5 deg towards the Sun line. The main body of each spacecraft will be an eight-sided platform with diameter of 3.4 m and height of 1.2 m. Several booms are attached to this central core: two axial booms of 14.9 m length, two radial magnetometer booms of 5 m length, and four radial wire booms of 60 m length. Attitude and orbit control will use a set of axial and radial thrusters. A four-head star tracker and a slit-type digital Sun sensor (DSS) provide input for attitude determination. In addition, an accelerometer will be used for closed-loop orbit maneuver control. The primary AGS product will be a daily definitive attitude history. Due to power limitations, the star tracker and accelerometer data will not be available at all times. However, tracker data from at least 10 percent of each orbit and continuous DSS data will be provided. An extended Kalman filter (EKF) will be used to estimate the three-axis attitude (i.e., spin axis orientation and spin phase) and rotation rate for all times when the tracker data is valid. For other times, the attitude is generated by assuming a constant angular momentum vector in the inertial frame. The DSS sun pulse will provide a timing signal to maintain an accurate spin phase. There will be times when the Sun is occulted and DSS data is not available. If this occurs at the start or end of a definitive attitude product, then the spin phase will be extrapolated using the mean rate determined by the EKF.
机译:本文介绍了用于支持磁层多尺度(MMS)任务的姿态地面系统(AGS)设计。 AGS是特派团行动控制中心的一个组成部分。它负责验证机载姿态和加速度计偏差估计值,校准姿态传感器和航天器惯性张量,并生成确定的姿态历史以供科学团队使用。位于马里兰州格林贝尔特的NASA戈达德太空飞行中心(GSFC)负责开发MMS航天器,MMS任务的总体管理以及任务运营。 MMS计划于2014年启动,计划进行为期两年的任务。 MMS的任务包括四个相同的航天器,它们以偏心地球轨道的四面体形式飞行。相对较紧的地层,范围从10到400 km,将提供协调的观测结果,从而洞察小规模的磁场重新连接过程。通过改变四面体的尺寸以及轨道的半长轴和偏心率,并利用变化的太阳相位,这种几何形状可以研究弓形激波和磁尾等离子体物理学,包括加速度,重新连接和湍流。任务分为两个阶段。这些阶段在第一阶段的轨道尺寸为1.2 x 12地球半径,在第二阶段的轨道尺寸为1.2x25地球半径,以便分别研究白天的磁更年期和夜晚的磁尾。两个任务阶段的轨道周期大约为一天和三天。四个MMS航天器中的每一个将以每分钟3转(rpm)的速度旋转稳定,其旋转轴的方向靠近黄道北极,但向太阳方向倾斜约2.5度。每个航天器的主体将是一个直径为3.4 m,高度为1.2 m的八边平台。几个吊杆连接到此中心核心:两个长度为14.9 m的轴向吊杆,两个长度为5 m的径向磁力计吊杆和四个长度为60 m的径向钢丝吊杆。姿态和轨道控制将使用一组轴向和径向推进器。四头恒星跟踪仪和狭缝型数字太阳传感器(DSS)提供了用于确定姿态的输入。另外,加速度计将用于闭环轨道操纵控制。 AGS的主要产品将是每日明确的态度记录。由于功率限制,恒星跟踪器和加速度计数据将始终不可用。但是,将提供来自每个轨道至少10%的跟踪器数据以及连续的DSS数据。当跟踪器数据有效时,将一直使用扩展的卡尔曼滤波器(EKF)来估算三轴姿态(即,自旋轴方向和自旋相位)和旋转速率。对于其他时间,通过在惯性系中假设角动量矢量恒定来生成姿态。 DSS太阳脉冲将提供一个定时信号以保持准确的自旋相位。有时候,太阳被遮住了,而DSS数据不可用。如果这是在确定的姿态乘积的开始或结束时发生的,则将使用由EKF确定的平均速率来推断自旋相位。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号